280 research outputs found

    A 5 Gb/s Radiation Tolerant Laser Driver

    Get PDF
    A laser driver for data transmission at 5 Gb/s has been developed as a part of the Giga Bit Transceiver (GBT) project. The Giga Bit Laser Driver (GBLD) targets High Energy Physics (HEP) applications for which radiation tolerance is mandatory. The GBLD ASIC can drive both VCSELs and some types of edge emitting lasers. It is essentially composed of two drivers capable of sinking up to 12 mA each from the load at a maximum data rate of 5 Gb/s, and of a current sink for the laser bias current. The laser driver include also pre-emphasis and duty cycle control capabilities

    Single event upset studies for the ATLAS SCT and pixel optical links

    Get PDF
    Optical data transmission has been chosen for the ATLAS Pixel and SemiConductor Tracker to deliver both timing and control information to the detector modules and transmit tracking data to the remote computer room. Radiation hardness of individuals optical components and their ASICs drivers have been reported in previous papers. We will report here the Single Event Upset studies carried out on a customised optopackage using a high-energy pion beam. It will be shown that the system is sufficiently robust to SEU at the ATLAS SCT level

    Rzadki przypadek pierwotnego czerniaka przełyku

    Get PDF

    Data acquisition software for the CMS strip tracker

    Get PDF
    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

    Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    Get PDF
    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore